Главная / Библиотека / Матричный модуль MH GoPower

Матричный модуль MH GoPower

Теги передача энергии mhgp бпла
Матричный модуль MH GoPower

MH GoPower («MHGP») предлагает единственную линейку фотоэлектрических приемников, способных обеспечивать широкий диапазон выходной мощности и напряжения. Уровни выходной мощности варьируются от десятков милливатт до сотен ватт, в то время как уровни выходного напряжения возможны от 4 вольт до более 30 вольт (более высокие напряжения возможны при последовательном подключении фотоэлементов). Модуль MHGP состоит из 25 стандартных ячеек размером 10 x 10 мм. Линия продуктов "Cell-Module" наиболее эффективно работает с длинами волн в диапазоне от 900 нм до 1000 нм.

Безымянный

Рисунок 1. Общий вид клеточного модуля MHGP

YCH-H300M - это стандартный продукт MHGP с клеточным модулем, подходящий для приложений, требующих мощности до 300 Вт при наличии активного охлаждения. Более высокая выходная мощность также возможна при хорошем терморегулировании (производительность фотоэлектрического модуля падает на ~ 3% на каждые 10 °C повышения температуры).

Целевые приложения включают в себя фотоэлектрические приемники для передачи энергии лазерного излучения (включая питание БПЛА, аэрокосмических приложений и удаленных наземных датчиков). Особенности целевых приложений включают необходимость удаленной подачи питания или необходимость работы в условиях высокого напряжения или высоких электромагнитных помех.

Электрические характеристики:

 

Парт номер

Длина (мм)

Ширина (мм)

Высота (мм)

Входная мощность
(Вт)

Удельная мощность
(Вт/см2)

Vmax (В)

Imax (A)

Pmax (Вт)

Эффективность
(%)

YCH-H300M

131.0

58.2

16.0

189

7

30,4

2,1

65,1

34,4

403

15

29,1

4,7

136,6

33,9

623

23

28,0

7,0

195,4

31,4

807

30

27,3

8,8

239,6

29,7

1023

38

26,6

10,5

279,2

27,3

ьрпз

Рисунок 2. Электрические характеристики

Ключевые особенности:

- Высокоэффективный фотоэлектрический элемент MIH® VMJ на основе кремния

- Устойчивость к высоким температурам (работает до 120 °C)

- Оптимальная эффективность с лазерами 900-1000 нм

- Медная подложка с высокой теплопроводностью

Приложения:

- Беспилотные летательные аппараты

- Дистанционная зарядка

- Беспроводная передача энергии

hhgghh

Рисунок 3. Размеры ячейки.

© MHGP

Компания INSCIENCE помогает своим заказчикам решать любые вопросы и потребности по продукции MHGP на территории РФ

Online заявка

Теги передача энергии mhgp бпла
Новые статьи
Характеристика свойств субхондральной кости человека с помощью спектроскопии в ближней инфракрасной области (БИК)

Дегенеративные заболевания суставов часто характеризуются изменениями свойств суставного хряща и субхондральной кости. Эти изменения часто связаны с толщиной субхондральной пластинки и морфологией трабекулярной кости. Таким образом, оценка целостности субхондральной кости может дать важные сведения для диагностики патологий суставов. В данном исследовании изучается потенциал оптической спектроскопии для характеристики свойств субхондральной кости человека. Образцы остеохондральной кости (n = 50 – количество образцов) были извлечены из коленного сустава трупа человека (n = 13) в четырех анатомических точках и подвергнуты БИК-спектроскопии(в ближней инфракрасной области). Затем образцы были исследованы с помощью микрокомпьютерной томографии для определения морфометрических характеристик субхондральной кости, включая: толщину пластинки (Sb.Th), толщину трабекул (Tb.Th), объемную долю (BV/TV) и индекс модели структуры (SMI). Связь между свойствами субхондральной кости и спектральными данными в 1-м (650 - 950 нм), 2-м (1100 - 1350 нм) и 3-м (1600-1870 нм) оптических окнах была исследована с помощью многомерного метода частичных наименьших квадратов (PLS) регрессии. Значимые корреляции (p < 0.0001) и относительно низкие ошибки прогнозирования были получены между спектральными данными в 1-м оптическом окне и Sb.Th (R2 = 92.3%, ошибка = 7.1%), Tb.Th (R2 = 88.4%, ошибка = 6.7%), BV/TV (R2 = 83%, ошибка = 9.8%) и SMI (R2 = 79.7%, ошибка = 10.8%). Таким образом, БИК-спектроскопия в 1-м тканевом оптическом окне способна характеризовать и оценивать свойства субхондральной кости и потенциально может быть адаптирована во время артроскопии.

Моделирование нервного волокна на основе оптического волновода

Миелинизированные аксоны являются многообещающими кандидатами для передачи нервных сигналов и света ввиду их волноводных структур. С другой стороны, с появлением таких заболеваний, как рассеянный склероз и нарушений формирования и передачи нервных сигналов из-за демиелинизации, понимание свойств миелинизированного аксона как волновода приобретает большую важность. Настоящее исследование направлено на то, чтобы показать, что профиль показателя преломления (ПП) миелинизированного аксона играет существенную роль в передаче лучей в нем. 

Оптимизация обнаружения сверхслабых световых потоков

В ходе исследования, описанного в данной статье, были объединены статистическая модель, анализ шумов детектора и эксперименты по калибровке. Согласно результатам, видимый свет может быть обнаружен с помощью ПЗС камеры с электронным умножителем с соотношением сигнал/шум, равным 3, для потоков с количеством фотонов менее 30 фотонов с−1 см−2.

Диагностика импульсного плазменного потока

Импульсные плазменные потоки в плазменных ускорителях широко используются для решения ряда научных и практических задач. Особый интерес среди применений импульсных плазменных потоков представляют термоядерный синтез и астрофизические исследования, например, экспериментальное исследование взаимодействия импульсного плазменного потока с материалами.

Полные высокопроизводительные настольные системы сканирования HSI PUSH-BROOM

Применение гиперспектральной визуализации заметно расширилось за последние годы. Тем не менее, остается общая проблема, а именно: предоставление полного интегрированного решения для фиксации 2-D гиперспектральных изображений в компактном настольном формате, которое предоставляет подробную спектральную информацию для определения компонентов, количества и их распределения в плоскости сканирования.

Автофлуоресцентная микроскопия — идентификация бактериальных сигналов на образцах горных пород
Распространенным методом обнаружения микробов в жидких и нежидких образцах является окрашивание флуоресцентными красителями, при котором образцы окрашиваются флуорофором, возбуждаемым фотонами от источника света. Флуорофоры — это молекулы, которые проявляют флуоресценцию, и могут быть биомолекулами естественного происхождения (в этом случае флуоресценция называется автофлуоресценцией), флуоресцентными красителями (синтезированными молекулами) или минералами. Конкретные применения красителей включают обнаружение и перечисление бактерий, визуализацию экспрессии генов и обнаружение биомолекул, которые иначе невозможно было бы отследить.
У Вас особенный запрос?
У Вас особенный запрос?
Весьма часто наши заказчики лучше нас знают, какое оборудование им нужно. В этом случае мы берём на себя общение с производителем, доставку и таможенную очистку, а также все вопросы гарантийного периода. Пожалуйста, заполните эту форму, и мы свяжемся с Вами, чтобы помочь решить любую Вашу задачу. Или позвоните нам по телефону +7(495)199-0-199
Форма заявки
Ваше имя: *
Ваше имя
Ваш e-mail: *
Ваш телефон: *
Ваш телефон
Наши
контакты
г. Москва, ул. Бутлерова, д. 17Б

г. Санкт-Петербург, улица Савушкина 83, корп. 3