Главная / Библиотека / Колориметрия с Avantes

Колориметрия с Avantes

Теги спектроскопия avantes колориметрия
Колориметрия с Avantes

Спектральная чувствительность человеческого глаза достигает максимума при восприятии излучения с длиной волны 555 нм. Создается впечатление, что зеленый цвет обладает более высокой яркостью по сравнению с другими цветами: исследования показали, что на длине волны 490 нм чувствительность глаза человека составляет всего 20% от чувствительности на уровне 555 нм.

Хоть наш глаз и способен различить около 10 миллионов различных цветов, его чувствительности недостаточно для численного измерения соответствующих длин волн - колориметрии. Для этой цели используется специализированное оборудование – спектрометры.

daaafcf8e134c30f448bb4ca14d1f6c4_SКомпания Avantes разработала целый ряд специальных зондов для промышленных и лабораторных приложений колориметрии. Спектрометры имеют рабочий диапазон, в котором их чувствительность наиболее высока. Например, спектрометры Avantes видимого диапазона охватывают диапазон от 380 нм до 780 нм и имеют спектральное разрешение около 5 нм. Измеряемая область освещается источником белого света. Колориметрия позволяет определять цвет ткани, бумаги; зрелость фруктов, сортов вина.

Компания Avantes предлагает два набора оборудования и для выполнения экспериментов. Основным элементом этой системы является спектрометр AvaSpec-ULS2048CL-EVO один из них предназначен для неболь
423c23827096d15f6a3f90fd1a691b32_Mших площадей, другой - для поверхностей.

Инструменты спектроскопии Avantes используются практически во всех OEM-приложениях во многих отраслях промышленности, охватывая весь мировой рынок. Обладающая 20-летним опытом, компания стремится помочь нашим клиентам найти идеальные решения их задач.

Спектрометры Avantes, источники света и оптоволоконные приборы для экспериментов укрепили позицию спектроскопических методов в следующих областях:

  • сельское хозяйство и продовольственные товары
  • фармацевтика / химия
  • фотоника
  • освещение
  • биомедицинские технологии
  • солнечные, стеклянные покрытия
  • технологии полупроводников
  • геммология
  • экология
     

©Avantes

Компания INSCIENCE помогает своим заказчикам решать любые вопросы и потребности по продукции Avantes на территории РФ 

Теги спектроскопия avantes колориметрия
Новые статьи
Характеристика свойств субхондральной кости человека с помощью спектроскопии в ближней инфракрасной области (БИК)

Дегенеративные заболевания суставов часто характеризуются изменениями свойств суставного хряща и субхондральной кости. Эти изменения часто связаны с толщиной субхондральной пластинки и морфологией трабекулярной кости. Таким образом, оценка целостности субхондральной кости может дать важные сведения для диагностики патологий суставов. В данном исследовании изучается потенциал оптической спектроскопии для характеристики свойств субхондральной кости человека. Образцы остеохондральной кости (n = 50 – количество образцов) были извлечены из коленного сустава трупа человека (n = 13) в четырех анатомических точках и подвергнуты БИК-спектроскопии(в ближней инфракрасной области). Затем образцы были исследованы с помощью микрокомпьютерной томографии для определения морфометрических характеристик субхондральной кости, включая: толщину пластинки (Sb.Th), толщину трабекул (Tb.Th), объемную долю (BV/TV) и индекс модели структуры (SMI). Связь между свойствами субхондральной кости и спектральными данными в 1-м (650 - 950 нм), 2-м (1100 - 1350 нм) и 3-м (1600-1870 нм) оптических окнах была исследована с помощью многомерного метода частичных наименьших квадратов (PLS) регрессии. Значимые корреляции (p < 0.0001) и относительно низкие ошибки прогнозирования были получены между спектральными данными в 1-м оптическом окне и Sb.Th (R2 = 92.3%, ошибка = 7.1%), Tb.Th (R2 = 88.4%, ошибка = 6.7%), BV/TV (R2 = 83%, ошибка = 9.8%) и SMI (R2 = 79.7%, ошибка = 10.8%). Таким образом, БИК-спектроскопия в 1-м тканевом оптическом окне способна характеризовать и оценивать свойства субхондральной кости и потенциально может быть адаптирована во время артроскопии.

Моделирование нервного волокна на основе оптического волновода

Миелинизированные аксоны являются многообещающими кандидатами для передачи нервных сигналов и света ввиду их волноводных структур. С другой стороны, с появлением таких заболеваний, как рассеянный склероз и нарушений формирования и передачи нервных сигналов из-за демиелинизации, понимание свойств миелинизированного аксона как волновода приобретает большую важность. Настоящее исследование направлено на то, чтобы показать, что профиль показателя преломления (ПП) миелинизированного аксона играет существенную роль в передаче лучей в нем. 

Оптимизация обнаружения сверхслабых световых потоков

В ходе исследования, описанного в данной статье, были объединены статистическая модель, анализ шумов детектора и эксперименты по калибровке. Согласно результатам, видимый свет может быть обнаружен с помощью ПЗС камеры с электронным умножителем с соотношением сигнал/шум, равным 3, для потоков с количеством фотонов менее 30 фотонов с−1 см−2.

Диагностика импульсного плазменного потока

Импульсные плазменные потоки в плазменных ускорителях широко используются для решения ряда научных и практических задач. Особый интерес среди применений импульсных плазменных потоков представляют термоядерный синтез и астрофизические исследования, например, экспериментальное исследование взаимодействия импульсного плазменного потока с материалами.

Полные высокопроизводительные настольные системы сканирования HSI PUSH-BROOM

Применение гиперспектральной визуализации заметно расширилось за последние годы. Тем не менее, остается общая проблема, а именно: предоставление полного интегрированного решения для фиксации 2-D гиперспектральных изображений в компактном настольном формате, которое предоставляет подробную спектральную информацию для определения компонентов, количества и их распределения в плоскости сканирования.

Автофлуоресцентная микроскопия — идентификация бактериальных сигналов на образцах горных пород
Распространенным методом обнаружения микробов в жидких и нежидких образцах является окрашивание флуоресцентными красителями, при котором образцы окрашиваются флуорофором, возбуждаемым фотонами от источника света. Флуорофоры — это молекулы, которые проявляют флуоресценцию, и могут быть биомолекулами естественного происхождения (в этом случае флуоресценция называется автофлуоресценцией), флуоресцентными красителями (синтезированными молекулами) или минералами. Конкретные применения красителей включают обнаружение и перечисление бактерий, визуализацию экспрессии генов и обнаружение биомолекул, которые иначе невозможно было бы отследить.
У Вас особенный запрос?
У Вас особенный запрос?
Весьма часто наши заказчики лучше нас знают, какое оборудование им нужно. В этом случае мы берём на себя общение с производителем, доставку и таможенную очистку, а также все вопросы гарантийного периода. Пожалуйста, заполните эту форму, и мы свяжемся с Вами, чтобы помочь решить любую Вашу задачу. Или позвоните нам по телефону +7(495)199-0-199
Форма заявки
Ваше имя: *
Ваше имя
Ваш e-mail: *
Ваш телефон: *
Ваш телефон
Наши
контакты
г. Москва, ул. Бутлерова, д. 17Б

г. Санкт-Петербург, улица Савушкина 83, корп. 3