Как известно, характеристики пучка лазерного излучения в основном определяются формой резонатора, в котором лазерное излучение усиливается до необходимой мощности. Профиль пучка определяется формой отражающих поверхностей (на рис. 1 представлены самые распространенные), расположенных в резонаторе зеркал из диэлектрического или монокристаллического вещества.
Работа лазерного резонатора построена на явлении полного внутреннего отражения (ПВО), когда преломленный пучок при падении на отражающую поверхность среды отсутствует.
Рисунок 1. Четыре распространенных типа оптических резонаторов, применяемых в лазерах: n – целое число, λ – длина волны генерации, R – радиус кривизны сферического зеркала, f – фокусное расстояние сферического зеркала
Резонатор стабилизирован, если все излучение, усиливающееся за счет ПВО (при условии, что количество отражений велико) внутри активной среды, остается внутри полости (см. рис. 2). В этом случае не происходит утечки мощности, то есть все излучение достигает единственного выхода из резонатора - частично отражающего зеркала.
Когда резонатор не стабилизирован, лучи при множественном отражении отклоняются на некоторый угол, пока не достигают выхода из резонатора. Если лазерный резонатор не стабилизирован, диаметр пучка излучаемого света будет расти по мере усиления.
Нестабилизированные резонаторы применяют в лазерах, где излучение характеризуется достаточно высокой мощностью. Утечка мощности нужна, чтобы предохранить зеркала от повреждений.
Стабилизированные резонаторы часто используются в лазерах, мощность излучения которых не превышает 2 кВт. За счет стабилизации повышается эффективность накачки и снижается погрешность направленности излучения.
Рисунок 2. Ход излучения в стабилизированном (слева) и нестабилизированном резонаторе (справа): в стабилизированном отсутствуют утечки излучения, в нестабилизированном излучение по мере усиления покидает полость
Длина пути излучения в резонаторе определяет «продольные моды» резонатора или пространственное распределение электрического поля, которое вызывает стоячую волну. Моды (типы колебаний) придают пучку форму.
Колебания сохраняют профиль амплитуды и воспроизводят сами себя после завершения одного пути замкнутого контура внутри резонатора (за исключением возможной утечки некоторого количества мощности из-за потерь в резонаторе).
Для возникновения резонансной моды необходим фазовый сдвиг, равный целому числу оборотов (циклов) замкнутого контура (рис. 3).
Рисунок 3. Фазовый сдвиг излучения после прохождения полного цикла в оптическом резонаторе (пропорционален числу оборотов)
Простейший тип поперечных колебаний лазерного резонатора – гауссова мода (TEM nm) – описывается с помощью аппроксимации электрической компоненты поля произведением функции Гаусса на полином Эрмита:
или:
где E0 – амплитуда электрической компоненты излучения, оси x, y составляют плоскость среза пучка, ось z – направление распространения излучения, w0 – радиус перетяжки пучка, w(z) – радиус пучка в данной точке распространения, Hn (x) и Hm (x) – полиномы Эрмита с неотрицательными целочисленными индексами n и m, k – волновое число (k = 2π/λ), zR – рэлеевский диапазон, R(z) – радиус кривизны волнового фронта.
Целые числа – индексы полиномов Эрмита – n и m определяют профиль пучка в направлениях осей x и y соответственно. Идеальная Гауссова мода обозначается как TEM00, в этом случае оба индекса полинома Эрмита равны нулю (см. рис. 4). Остальные значения индексов полинома Эрмита соответствуют более сложным типам колебаний. На рисунке 5 показан поперечный срез пучка излучения, соответствующего Гауссовым колебаниям нижнего порядка, а также некоторые поперечные моды высших порядков.
Рисунок 4. Поперечная мода TEM00 (Гауссова мода) и соответствующий ей Гауссов пучок
Рисунок 5. Поперечные срезы пучка, соответствующего резонаторной моде Эрмита-Гаусса нижнего порядка
© Edmund Optics Inc.
Компания INSCIENCE помогает своим заказчикам решать любые вопросы и потребности по продукции Edmund Optics на территории РФ
В работе предлагается технология производства источников неразличимых фотонов в телекоммуникационном С-диапазоне на основе эпитаксиальных полупроводниковых квантовых точек. Новая методика позволяет детерминировано интегрировать квантовые излучатели в микрорезонаторы из кольцевых брэгговских решёток.
В работе реализован протокол BB84 с твердотельным источником одиночных фотонов на основе атомарно тонких слоев WSe2, выделяющийся простотой изготовления и настройки свойств. Система конкурентоспособна в сравнении с передовыми решениями, а с внедрением улучшений в виде микрорезонаторов может превзойти их.
В статье описывается метод широкопольной квантовой микроскопии с пространственным разрешением 1,4 мкм, основанный на схеме с симметричными плечами холостых и сигнальных фотонов. Преимущества метода: высокие скорость, отношение сигнал/шум и устойчивость к рассеянному свету в сравнении с аналогичными методами квантовой визуализации.
г. Санкт-Петербург, улица Савушкина 83, корп. 3