Волоконные электрооптические модуляторы используются для регулирования лазерного излучения. В цепи фазовые модуляторы в основном работают на частоте 1 ГГц и выше, отчего создается значительная нагрузка на ВЧ-источник. В этой статье приведены фрагменты исследования свойств цепи, в которой фазовый электрооптический волоконный модулятор подключен к генератору ВЧ-сигналов. Для анализа характеристик в лабораторной работе использованы приборы для регистрации спектра модулированного оптического сигнала.
По результатам опыта выявлено, что генератор высокочастотных сигналов может использоваться для управления фазовым электрооптическим модулятором, подход и фрагменты данного исследования приведены далее.
Экспериментальная установка и схема опыта
Для управления волоконным фазовым модулятором требуется заранее определить мощность, которую должен развить ВЧ-источник.
Рисунок 1. Экспериментальная установка, в которой волоконный электрооптический фазовый модулятор подключен к генератору сигналов
Перед расчетом мощности следует оценить напряжение возбуждения, необходимого для достижения желаемой глубины модуляции. Критерии выбора глубины модуляции, подбор соотношения глубины модуляции и напряжения возбуждения, а также расчеты мощности ВЧ-источника приведены в файле Lab Facts.
В ходе исследований было выявлено, что мощности одного функционального генератора будет недостаточно для решения всех поставленных задач, потому решено было разместить усилитель с низким уровнем шума между источником и модулятором. Также в цепь включили фильтр нижних частот, чтобы устранить искажение сигнала, поступавшего от генератора. Таким образом осуществлялось управление фазовым модулятором, на который подавалось синусоидальное напряжение, и в результате происходила синусоидальная фазовая модуляция лазерного излучения 1550 нм.
Сигнал на осциллоскоп поступал из сканирующего интерферометра Фабри-Перо. Интерферометр разместили после фазового модулятора, чтобы регистрировать оптический сигнал. Этот тип интерферометра был выбран для того чтобы наблюдать мельчайшие особенности модулированных оптических спектров: при длине волны 1550 нм разность частот 1 ГГц эквивалентна разности длин волн в 0,8 мкм. Измеренные спектры представлялись в виде функций времени сканирования. В документе Lab Facts описан прямой метод преобразования из единиц времени сканирования Фабри-Перо в единицы относительной оптической частоты. В этом опыте принимается Δf = (1,17 ГГц / мс) Δt.
Результаты эксперимента
В теории к работе указано, что спектры модулированных оптических сигналов должны представлять собой наборы симметричных боковых полос, расположенных по разные стороны от несущей частоты лазера fo. Боковые полосы смещены от этой частоты на целые величины, кратные частоте модуляции fm (fo ± N fm где N = 1, 2, ...). Относительная высота боковых полос зависит от глубины модуляции, которая, в свою очередь, зависит от пикового значения управляющего напряжения. Учитывая глубину модуляции, можно рассчитать относительные амплитуды пика несущей лазера и вычислить значения боковых полос модуляции. Таким образом происходит распределение мощности по различным пикам, что в конечном счете позволяет решать различные задачи. Опыт доказал справедливость теоретических предположений.
Рисунок 2. Спектр фазовомодулированного сигнала при напряжении Vpp = 2.85 В
Несущая частота - fo; частота модуляции fm = 1 ГГц. По оси Х измеряется время сканирования интерферометром Фабри-Перо, которое можно перевести в единицы относительной оптической частоты
Рисунок 3. Кривые, соответствующие относительным мощностям пика несущей и нескольких боковых полос, представленных в виде функции глубины модуляции. Глубина модуляции в 0.44 |ф0|/pi обозначена черной стрелкой и относится к рисунку 2, глубина модуляции в 0.56 |ф0|/pi обозначена серой стрелкой и соответствует рисунку 4
Рисунок 4. Спектр фазовомодулированного сигнала при напряжении Vpp = 3.63 В
Несущая частота - fo; частота модуляции fm = 1 ГГц. По оси Х измеряется время сканирования интерферометром Фабри-Перо, которое можно перевести в единицы относительной оптической частоты
Спектральные кривые на рисунках 2 и 4 представляют собой модулированные спектры, которые и изучались в работе. Теоретические кривые на рисунке 3 – это функция глубины модуляции, по которым вычислены ожидаемые относительные мощности пика несущей частоты лазера (сплошная кривая красного цвета), боковые полосы первого порядка (пунктирные кривые синего цвета), второго порядка (пунктирные кривые зеленого цвета) и третьего порядка (пунктирные кривые фиолетового цвета). Черная стрелка указывает на глубину модуляции, относящуюся к спектру на рисунке 2, а серая стрелка указывает на глубину модуляции, соответствующей спектру на рисунке 4.
Из результатов работы видно, что частоты модуляции согласованы и спектральные распределения мощности в оптических спектрах соответствуют управляющему пиковому напряжению источника ВЧ-сигналов. Итак, совпадение эмпирических и экспериментальных данных доказывает справедливость предположения о том, что управление фазовым модулятором можно осуществлять с помощью генератора ВЧ-сигналов.
© Thorlabs Inc.
Компания INSCIENCE помогает своим заказчикам решать любые вопросы и потребности по продукции Thorlabs на территории РФ
г. Санкт-Петербург, улица Савушкина 83, корп. 3