Главная / Библиотека / Внеосевые параболические зеркала Thorlabs

Внеосевые параболические зеркала Thorlabs

Теги оптоволоконная коммуникация thorlabs внеосевые зеркала коллиматор
Внеосевые параболические зеркала Thorlabs

Отражение коллимированных пучков

Параболические зеркала (рис. 1) фокусируют все лучи падающего коллимированного пучка в дифракционно ограниченное пятно. Напротив, вогнутые сферические зеркала (рис. 2) обладают свойством концентрировать падающий свет в объем (т. н. фокальный объем). Фокальный объем сферического зеркала можно уменьшить, уменьшив диаметр входящего коллимированного пучка.
 

Parabolic_Mirror_Focus_A2-780

Рисунок 1. Параболические зеркала имеют единую точку фокусировки всех лучей в коллимированном пучке

Spherical_Mirror_Focus_A2-780

Рисунок 2. Сферические зеркала не отражают все лучи коллимированного пучка через одну точку. Пересечения отраженных лучей обозначены точками

Коллимация пучка

Распространенная в практических задачах модель - точечный источник - излучает свет во всех направлениях, а значит, обладает высокой расходимостью. Если источник света поместить в фокус параболического или сферического зеркала, выходной пучок становится коллимированным (параллельным), приближаясь к идеальному. Коллимация с использованием сферических зеркал имеет некоторые недостатки, которые в некоторых экспериментах могут оказать негативное влияние на точность результатов. Качество коллимации с помощью сферических зеркал можно улучшить за счет уменьшения площади отражающей поверхности.

Параболическое или сферическое зеркало?

На выбор влияют диаметр пучка, с которым предстоит работать, требования к производительности приложения, и, конечно, бюджет. Стоит отметить, что характеристики параболического и сферического зеркал становятся почти эквивалентными при малых диаметрах падающего пучка излучения. Параболические зеркала дороже, так как их отражающие профили труднее изготовить, они имеют большие габариты по сравнению со сферическими зеркалами.

Внеосевые параболические зеркала

b3793725640

Рисунок 3. Фокус осевого параболического зеркала расположен близко к отражающей поверхности, что часто становится причиной затруднений

b2005164587

Рисунок 4. Внеосевое параболическое зеркало можно представить как увеличенный сегмент параболического зеркала. Оба зеркала будут иметь равные фокальные расстояния

Как симметричные параболические, так и внеосевые параболические зеркала имеют одну точку фокусировки. Преимущество внеосевого параболического зеркала перед осевым состоит главным образом в том, что поверхности зеркала не перекрывают точку фокуса. Тогда свет, излучаемый под небольшими углами по отношению к оптической оси зеркала, будет также попадать в фокус.

b2624506614

Рисунок 5. Ширину параболы измеряют относительно линии, проходящей через фокус перпендикулярно оси симметрии

b3324382994

Рисунок 6. Одна часть параболы обеспечивает отклонение пучка от оси симметрии на 90°

b1525405314

Рисунок 7. Участок зеркала ближе к оси параболы обеспечит меньший угол отклонения от оси

b2784275581

Рисунок 8. Уменьшение ширины параболы увеличивает угол внеосевой параболы

Внеосевой угол зеркала измеряется между оптической осью зеркала и осью фокуса. Угол зависит от сегмента параболы, а также от ширины (рис. 6) базовой параболы. Внеосевое параболическое зеркало на рисунке 5 имеет угол 90°.

Увеличение ширины родительской параболы уменьшает внеосевой угол. Обратная зависимость проиллюстрирована на рисунках 7 и 8. Ширина параболы на рисунке 7 больше, это зеркало с меньшим внеосевым углом.

Ширина параболы также влияет на фокусное расстояние. Чем шире парабола, тем больше фокусное расстояние внеосевого параболического зеркала, и наоборот.

Фокусировка излучения внеосевым параболическим зеркалом

b2739054108

Рисунок 9. Фокусная и оптическая оси зеркала не совпадают и не параллельны

b4075310530

Рисунок 10. Когда коллимированный пучок проходит параллельно оптической оси параболического зеркала или внеосевого зеркала, свет фокусируется в дифракционно ограниченное пятно

b2175971381

Рисунок 11. Когда коллимированный пучок не сонаправлен оптической оси зеркала, не удастся собрать излучение в пятно

Выходной коллимированный пучок будет иметь высокое качество, если пройдет параллельно оптической оси внеосевого зеркала. Это условие связано с параболической формой отражающих поверхностей этих зеркал, не симметричных относительно их фокальных точек.

Параболические и внеосевые параболические зеркала

Отражающая поверхность внеосевого зеркала эквивалентна части базовой параболы, которая не центрирована на оптической оси (рис. 9). Обычное параболическое зеркало показано на рисунке 10.

Ось фокусировки внеосевого зеркала проходит через задний фокальный отрезок и геометрический центр зеркала. Фокальная и оптическая оси зеркала не параллельны. Напротив, эти оси совпадают у параболических зеркал, отражающие поверхности которых центрированы на оптической оси базовой параболы.

Коллимированный свет, направленный не параллельно оптической оси, не будет фокусироваться в точке (рис. 11). Чтобы получить сильно коллимированный пучок от точечного источника, источник должен быть расположен в точке фокуса.

b727079949

Рисунок 12. Внеосевые зеркала имеют плоское круглое основание и боковые стороны. Плоское основание перпендикулярно оптической оси зеркала. Для примера показано зеркало MPD2151-P01

b534985143

Рисунок 13. Ориентацию оптической оси можно определить, заметив, что она перпендикулярна основанию зеркала. Местоположение фокальной точки можно приближенно определить, рассматривая коллимированные пучки, направленные параллельно оптической оси. Эти лучи отражаются симметрично вокруг локальных нормалей поверхности и проходят через точку фокусировки зеркала

При работе с внеосевыми параболическими зеркалами может возникнуть сложность с определением оптической и фокальной осей (рис. 12). Физические характеристики и размеры подложки зеркала могут служить ориентиром при установке и юстировке зеркала:  подложка зеркала имеет плоское круглое основание. Оптическая ось ориентирована перпендикулярно плоскому основанию. Следовательно, коллимированный пучок должен быть направлен нормально к поверхности основания. Подложка имеет длинную и короткую стороны, а отражающая поверхность расположена под углом. Нормаль к поверхности в различных точках отражателя можно приблизительно оценить, рассматривая поверхность зеркала на достаточно близком расстоянии (рис. 13).

Особенности монтажа и центровки зеркал Thorlabs

Внеосевые зеркала Thorlabs имеют установочное отверстие и три резьбовых монтажных отверстия, вырезанных на нижней поверхности их оснований. Схема расположения резьбовых отверстий соответствует вершинам равностороннего треугольника, а положение установочного отверстия указывает на короткую сторону внеосевого зеркала. Резьбовые отверстия предназначены для крепления зеркала к монтажным адаптерам или платформам.

b699457011

Рисунок 14. Пара внеосевых зеркал может использоваться в приложениях обработки изображений или для передачи излучения на расстояние

b926613108

Рисунок 15. Пара внеосевых зеркал может использоваться для передачи света в оптоволокне

Установка и калибровка зеркала

b2739054108

Рисунок 16. Форма отражающего профиля внеосевого зеркала соответствует части родительской параболы, которая не центрирована в фокусной точке. Из-за этого отражающая поверхность не является осесимметричной. При установке зеркала следует следить за тем, чтобы зеркало не вращалось вокруг своей оптической оси

b2089944732

Рисунок 17. Интерферометр с фазовой пластиной, помещенный в выходной пучок, может облегчить процесс юстировки внеосевого зеркала

Когда зеркало вращается, положение его фокальной точки также меняется из-за асимметрии. Поскольку это может отрицательно сказаться на точности оптической системы, зеркало следует закрепить так, чтобы отражающая поверхность не могла вращаться вокруг оптической оси.

Оптические характеристики зеркала чувствительны к смещениям. Один из способов защиты от отклонения при центровке - использование фиксированного, а не кинематического крепления.

Отражающие коллиматоры на основе внеосевых зеркал

Два порта на отражающих волоконных коллиматорах Thorlabs не взаимозаменяемы. Один порт предназначен для оптоволоконного соединителя, принимающего сильно расходящийся свет. Другой порт предназначен исключительно передачи коллимированного пучка в свободном пространстве (Рисунок 18).

b3580083223

Рисунок 18. Thorlabs предлагает отражающие коллиматоры, которые включают порт для оптоволоконного соединителя и порт для свободного пространства, коллимированный свет, распространяющийся параллельно оптической оси

b2520399302

Рисунок 19. Отражающий элемент коллиматора - внеосевое параболическое зеркало. Подложка зеркала выделена красным цветом. Форма отражающей поверхности представляет собой отрезок параболической кривой, смещенный от вершины

© Торлабс

Компания INSCIENCE помогает своим заказчикам решать любые вопросы и потребности по продукции Thorlabs на территории РФ 

Теги оптоволоконная коммуникация thorlabs внеосевые зеркала коллиматор
Новые статьи
Пространственно-разрешенная регистрация переходных процессов времени жизни флуоресценции
В статье описывается метод регистрации динамики времени жизни флуоресценции с одномерным пространственным разрешением. Для визуализации времени жизни флуоресценции используется многомерный время-коррелированный счет фотонов и линейное сканирование.
Обзор компактных источников суперконтинуума LEUKOS для биомедицинских приложений
В обзоре рассматриваются компактные источники суперконтинуума LEUKOS УФ, видимого и ИК диапазонов, созданные для приложений проточной цитометрии, CARS-микроскопии и оптической когерентной томографии. Преимущества данных источников: компактность, надежность, стабильность и низкая стоимость.
Масштабируемый детектор одиночных фотонов с улучшенной эффективностью и разрешением по числу фотонов
В статье представлен 28-пиксельный сверхпроводящий нанопроволочный детектор одиночных фотонов (SNSPD) с параллельной архитектурой. Новая технология предлагает масштабируемое решение для квантовых сетей и высокоскоростных квантовых вычислений, сочетая удобство работы с высокой производительностью.
Матрица оптических пинцетов с 6100 когерентными кубитами
В исследовании описывается создание матрицы оптических пинцетов для удержания 6100 нейтральных атомов в качестве когерентных кубитов. На экспериментальной платформе достигнуто рекордное время когерентности 12,6 секунд и время удержания атомов при комнатной температуре до 23 минут.
Сравнение наносекундных лазеров СОЛАР ЛС и Litron Lasers

В обзоре сравниваются наиболее востребованные модели наносекундных лазеров производства Litron Lasers и СОЛАР ЛС, в том числе лазеры с модуляцией добротности с высокой и сверхвысокой энергией импульса, высокой частотой повторения импульсов, компактные лазеры и лазеры с диодной накачкой.

Оптимальная обработка полипропиленовых пленок ИК лазерами
В работе экспериментально демонстрируется повышение качества и скорости обработки полипропиленовых пленок за счет небольшого смещения длины волны CO2 лазера со стандартных 10.6 мкм в область 10.2 мкм, соответствующую колебательной энергии растяжения связи С-С.
У Вас особенный запрос?
У Вас особенный запрос?
Весьма часто наши заказчики лучше нас знают, какое оборудование им нужно. В этом случае мы берём на себя общение с производителем, доставку и таможенную очистку, а также все вопросы гарантийного периода. Пожалуйста, заполните эту форму, и мы свяжемся с Вами, чтобы помочь решить любую Вашу задачу. Или позвоните нам по телефону +7(495)199-0-199
Форма заявки
Ваше имя: *
Ваше имя
Ваш e-mail: *
Ваш телефон: *
Ваш телефон
Наши
контакты
г. Москва, ул. Бутлерова, д. 17Б

г. Санкт-Петербург, улица Савушкина 83, корп. 3