Квантовая криптография как наука зародилась в 1984 году, когда был разработан первый протокол квантового распределения ключей, названный BB84. Главным преимуществом квантовых криптографических протоколов перед классическими является строгое теоретическое обоснование их стойкости: если в классической криптографии стойкость сводится, как правило, к предположениям о вычислительных возможностях подслушивателя, то в квантовой криптографии перехватчик может предпринимать все допустимые законами природы действия, и всё равно у него не будет возможности узнать секретный ключ, оставшись при этом незамеченны.
Важным для квантовой криптографии свойством квантовой механики является свойство коллапса волновой функции, которое означает, что при измерении любой квантовомеханической системы ее исходное состояния, вообще говоря, меняется. Это ведет к важному следствию о том, что невозможно достоверно различить квантовые состояния из их не ортогонального набора. Именно это свойство используется в обосновании секретности квантовой криптографии: при попытке подслушать передаваемые состояния из их не ортогонального набора перехватчик неизбежно вносит в них ошибку, в результате чего он может быть обнаружен по дополнительным помехам на приемной стороне. Поэтому решение о возможности секретного распространения ключей достигается легитимными пользователями на основе величины наблюдаемой ошибки на приемной стороне: при приближении значения этой ошибки к критической величине (зависящей от используемого протокола) длина секретного ключа в битах стремится к нулю, и передача ключей становится невозможной.
Квантовая сеть — коммуникационная сеть, защищающая передаваемые данные с использованием фундаментальных законов квантовой механики. Является практической реализацией квантовой криптографии. Квантовые сети формируют важный элемент квантовых вычислений и квантовых систем криптографии. Они допускают транспортировку квантовой информации между физически разделенными квантовыми системами. В распределенных квантовых вычислениях сетевые узлы в сети могут обрабатывать информацию, выполняя функцию квантовых вентилей. Безопасная передача данных может быть реализована с помощью алгоритмов квантового распределения ключей.
В квантовых сетях, использующих в качестве среды передачи оптоволокно или свободное пространство, важную роль играет передача чистых квантовых состояний в виде фотонов на большие расстояния.
В теории квантовые вычисления выглядят многообещающе, но реализовать их на практике непросто.
Прежде всего, кубиты крайне нестабильны – даже незначительные внешние воздействия нарушают запутанность. Чтобы избежать этого, используют камеры с максимальной изоляцией от воздействий внешней среды и температурой внутри чуть выше абсолютного нуля. И все равно максимальное время жизни квантовой системы, когда она пригодна для квантовых вычислений (время декогеренции), крайне мало. По данным ресурса Quantum Computing Report, сейчас время декогеренции не превышает сотен микросекунд, рекорд – 148,5 мкс – принадлежит 20-кубитовому компьютеру IBM в Токио. Через указанное время система начнет выдавать белый шум вместо вероятностных распределений. А за этот короткий период надо инициализировать систему кубитов, провести вычисления и получить результат.
Рисунок 1. Кубит описывается вероятностью нахождения в одном из состояний («0» или «1»)
Другое препятствие при выполнении на квантовых компьютерах сложных, длинных алгоритмов – наличие ошибок. Вероятность возникновения ошибок при вычислениях, считывании и записи информации возрастает вместе с ростом количества кубитов. Стандартные методы коррекции ошибок (дублирование вычислений и усреднение) в квантовом мире не работают. Приходится прибегать к специальным квантовым методам коррекции ошибок, когда из нескольких обычных кубитов формируется один логический кубит. Если каждый физический кубит будет работать с одним логическим, то каждая операция будет разрушать состояние запутанности и можно будет провести лишь малое количество операций. В качестве альтернативы можно объединить десять кубитов в кластер и использовать их как один логический кубит. Количество операций, выполняемых с такими логическими кубитами, можно увеличить на два порядка. То есть на порядок уменьшаем число кубитов, но на два порядка увеличиваем число операций, которые с ними можно проводит.
Для решения практических задач нужно радикально увеличить число используемых кубитов. Наращивание числа кубитов в квантовом компьютере – сложный технологический процесс. В лучших квантовых компьютерах, на сегодняшний день, их не более сотни.
В статье приводится применение и основные параметры пикосекундных лазеров. Сравниваются лазеры Inngu Laser серии GXP с известными европейскими и американскими производителями.
г. Санкт-Петербург, улица Савушкина 83, корп. 3