Введение
За последние несколько лет LightMachinery представила новую серию спектрометров с кросс-дисперсионной схемой. Устройства охватывают спектральный диапазон от 270 нм до 1675 нм, отдельные модели обладают рекордным разрешением 0.5 пм.
Рисунок 1. Компактный спектрометр HN-9332 (справа) имеет разрешение около 30 пм, слева - спектрометр HF-8993-0.5 с разрешением 0.5 пм
Согласно кросс-дисперсионной схеме, падающий свет рассеивается в двух направлениях до захвата 2D-сенсором более 10000 спектральных полос в одну экспозицию. Когда спектрометр освещается белым светом, поперечно-рассеянный спектр, захваченный датчиком, представит собой серию вертикальных полос, как показано на рисунке 2.
Рисунок 2. Слева: картина, видимая на дисплее спектрометра, когда дифракционная решетка освещается широкополосным («белым») светом, вертикальные полосы разнесены в горизонтальном направлении, на диаграмме красные полосы означают более длинные волны, синие - короткие волны; снимок экрана с датчика показан справа (оказана часть матрицы датчика)
Особенно интересным для изучения источником белого света является солнце. Прямой солнечный свет имеет не только высокую интенсивность, но и тысячи абсорбционных линий Фраунгофера по всему спектру. Солнце считается лучшим источником для калибровки спектрометра и оценки его характеристик.
Свойства солнца как источника света
Многие источники дают очень точные и полные солнечные спектры. На рисунке 3 показана видимая часть солнечного спектра, показаны сильные линии Фраунгофера и вид спектральной области около линии 590 нм.
Рисунок 3. Верхний спектр показывает сильные линии Фраунгофера, наложенные на спектр белого света
Обратите внимание на две близко расположенные линии поглощения в желтой части спектра. Это натриевые D-линии, являющиеся результатом поглощения желтого света натрием во внешней атмосфере Солнца.
В следующем разделе будет описано, как измеряется спектр с помощью спектрометров LightMachinery
Измерение спектров солнечного света
После того, как солнечный свет попадает в спектрометр, спектральные полосы захватываются датчиком камеры, как показано на рисунке 4. Полосы похожи на показанные на рисунке 2, при этом темные области соответствуют линиям солнечного поглощения. В этих областях с узкой длиной волны интенсивность света от Солнца снижается за счет поглощения во внешних слоях солнечной атмосферы (линии Фраунгофера) или за счет поглощения в земной атмосфере (теллурические линии, вызываемые кислородом и парами воды). Каждая полоса отделена от другой одной областью дисперсии.
Рисунок 4. Сравнение солнечного спектра из справочных данных с изображением на датчике, изображение на датчике содержит серо-белые полосы с областями более высокой интенсивности (солнечный спектр был масштабирован в направлении X, диапазон длин волн записанного спектра составляет от 524 нм до 528.5 нм и охватывает 90 полос
Поскольку область свободной дисперсии очень точно определяется производственным процессом, сравнительно просто сравнить солнечный спектр из литературы с необработанным изображением на детекторе. Если свободная спектральная область известна (например, по углу решетки), точная калибровка не требуется. Пример показан на рисунке 5. Изображение было перевернуто на 180 градусов в горизонтальном направлении, чтобы соответствовать отображению длин волн из справочника.
Тщательное изучение изображения с датчика на рис. 4 позволяет сделать вывод, что некоторые функции поглощения отображаются сверху и снизу изображения. Все спектрометры LightMachinery поставляются с программным обеспечением SpectraLoK, которое предназначено для «сшивания» последовательных полос и отображения результирующего спектра – этот процесс называют «развертыванием спектра». На рисунке 5 показан развернутый спектр солнечного света для области около 518 нм, что напрямую отображается программным обеспечением SpectraLoK.
Рисунок 5. Спектр солнечного света, зарегистрированный спектрометром HN-9332 в области около 518 нм, показывающий триплетное поглощение магния во внешних слоях Солнца (в дополнение к указанным линиям Mg и Fe в этой области солнечного спектра есть также некоторые линии поглощения Ni)
Помимо прямого отображения спектров, программное обеспечение SpectraLoK позволяет экспортировать данные для дальнейшего анализа и сравнения с эталонными спектрами. На рисунке 6 показаны графики с использованием данных, загруженных SpectraLoK (красный), и эталонного спектра (синий).
Рисунок 6. Сравнение солнечного спектра, зарегистрированного с помощью спектрометра LightMachinery HF-8989-2e (красный) и эталонного спектра (синий) из справочника (отображаемая область имеет ширину ~ 1 нм, с центром около 628 нм)
Выводы
Солнечный свет – это интенсивный и доступный всем источник света, который используется при калибровке. Эта статья демонстрирует результаты измерений, которые можно проводить с использованием солнечного света в качестве источника освещения. Качество измерений, высокое разрешение и широкий спектральный охват – все это стало возможным со спектрометрами LightMachinery.
LightMachinery занимается производством лазеров, оптических компонентов и оборудования для обработки материалов. Покупателями продукции LightMachinery являются заказчики, занимающиеся телекоммуникациями, полупроводниками, мощными лазерами, научными исследованиями, неразрушающим контролем, биофотоникой, электроникой, фармацевтическим производством и обработкой материалов. В компании трудоустроены только высококлассные специалисты, имеющие опыт работы более 20 лет в области оптического проектирования, производства лазеров, метрологии.
©LightMachinery
Компания INSCIENCE помогает своим заказчикам решать любые вопросы и потребности по продукции LightMachinery на территории РФ
В статье описан метод генерации суперконтинуума, расширенного в видимый диапазон. За счет четырехволнового смешения накачка 1064 нм создает антистоксовы и стоксовы компоненты на 831 нм и 1478 нм. Фазовый синхронизм обеспечивается благодаря микроструктурированному мультимодальному волокну особой конструкции.
г. Санкт-Петербург, улица Савушкина 83, корп. 3