Главная / Библиотека / Коротковолновая инфракрасная область спектра: преимущества при визуализации

Коротковолновая инфракрасная область спектра: преимущества при визуализации

Коротковолновая инфракрасная область спектра: преимущества при визуализации

К коротковолновой области инфракрасного излучения относятся длины волн из диапазона 0.9 - 1.7 мкм, но иногда коротковолновая ИК определяется и диапазоном 0.7 - 2.5 мкм. Поскольку керамические фотосенсоры распознают излучение длиной до 0.1 мкм, визуализация коротковолнового ИК спектра требует специальной оптики и электроники.

В основном в качестве фотоприемников при работе с коротковолновым ИК диапазоном пользуются приемниками, оснащенными InGaAs матрицей. Рабочая область таких фотоприемников охватывает практически всю область коротковолнового ИК спектра, от нижней границы (550 нм) до верхней (2.5 мкм). Несмотря на экономическую доступность фотоприемников линейного сканирования, более популярны фотоприемники областного сканирования – их активно применяют даже в военной промышленности благодаря конструктивной жесткости, надежности и устойчивости конфигурации к длительным перевозкам. Следует отметить, что на использование некоторых фотоприемных устройств требуется получение лицензии.

fig-1-swir
Рисунок 1. Электромагнитный спектр коротковолновой ИК области

Преимущества визуализации в коротковолновом ИК диапазоне

В отличие от средней и длинноволновой области ИК излучения, короткие ИК волны исходят не от самого объекта, а преломляются и поглощаются им, подобно видимому излучению. Таким образом, картина обретает высокий контраст. Благодаря контрасту облегчается решение задачи повышения разрешения. Природные источники коротких ИК волн – звезды и луна, видимые на ночном небе из-за подсвечивания фоновым излучением.

Для получения качественной визуализации требуется также специализированная оптика: линзы, объективы, покрытия которых также должны предназначаться для работы в коротковолновом ИК диапазоне. Использование объективов, не предназначенных для коротковолновой ИК области, спровоцирует снижение разрешения при визуализации, увеличив к тому же оптические аберрации.

Так как излучение этой области проходит через стекла, объективы, фильтры и окна, подобно видимому, принципиальных различий в производстве оптических компонентов для видимой и ИК области нет. Защитные окна и фильтры также можно встраивать в системы напрямую.

Многие задачи, где теоретически рекомендуется применять видимое излучение, на практике решаются с помощью коротких ИК волн: водяной пар, туман и подобные среды не влияют на такое излучение, в то время как источники видимого света чувствительны к условиям внешней среды.

Визуализация в видимом свете и в коротковолновом ИК диапазоне

Визуализация ИК спектров применяется в различных областях, включая проверку электронных плат, проверку солнечных элементов, экспертизу продукции, идентификацию и сортировку, наблюдение, борьбу с контрафакцией, контроль качества производственных процессов и др. Чтобы понять преимущества визуализации этого вида, рассмотрим некоторые наглядные примеры обычных повседневных продуктов, отображаемых с помощью видимого света и с помощью коротких ИК волн.

fig-2a-swir 1

Рисунок 2. а) Визуализация красного яблока в видимом спектре: яблоко кажется однородным, абсолютно красным, без каких-либо дефектов, б) ИК визуализация того же плода, но теперь отчетливо виден дефект на кожуре, качество продукта под сомнением

fig-3a-swir 2

Рисунок 3. а) Визуализация матового однотонного флакона с детской присыпкой в видимом спектре, содержимое флакона визуально не прослеживается, б) визуализация матового однотонного флакона с детской присыпкой в коротковолновом ИК спектре: содержимое флакона на этот раз распознается однозначно, можно оценить количество продукта

fig-5a-swir 5b

Рисунок 5. а) Картина «Bountiful Fruit», написанная художницей из Филадельфии Nicole Koenitzer в видимом диапазоне, б) Визуализация картины в ИК спектре: начальный набросок картины содержит изображения бананов на фоне, рамку, которых нет на конечном результате, в нижнем правом углу заметны штрихи, вероятно, художница начинала писать картину с фона и скорее всего, масло было выбрано не сразу

Коротковолновой ИК областью считается вполне определенный диапазон, для работы в котором требуется специализированная оптика с покрытиями, предназначенными для этого диапазона. Остается еще раз подчеркнуть важность тщательного подбора компонентов для визуализации в коротковолновом ИК диапазоне. При соблюдении всех требований и согласованности параметров оборудования можно избежать аберраций и снижения разрешения изображения.

Специально для визуализации ИК спектров компания Edmund Optics разработала фильтрующие и антибликовые покрытия для линз и пропускающих компонентов повышенной эффективности.

 

© Edmund Optics Inc.

Компания INSCIENCE помогает своим заказчикам решать любые вопросы и потребности по продукции Edmund Optics на территории РФ

 

 

 

Новые статьи
Характеристика свойств субхондральной кости человека с помощью спектроскопии в ближней инфракрасной области (БИК)

Дегенеративные заболевания суставов часто характеризуются изменениями свойств суставного хряща и субхондральной кости. Эти изменения часто связаны с толщиной субхондральной пластинки и морфологией трабекулярной кости. Таким образом, оценка целостности субхондральной кости может дать важные сведения для диагностики патологий суставов. В данном исследовании изучается потенциал оптической спектроскопии для характеристики свойств субхондральной кости человека. Образцы остеохондральной кости (n = 50 – количество образцов) были извлечены из коленного сустава трупа человека (n = 13) в четырех анатомических точках и подвергнуты БИК-спектроскопии(в ближней инфракрасной области). Затем образцы были исследованы с помощью микрокомпьютерной томографии для определения морфометрических характеристик субхондральной кости, включая: толщину пластинки (Sb.Th), толщину трабекул (Tb.Th), объемную долю (BV/TV) и индекс модели структуры (SMI). Связь между свойствами субхондральной кости и спектральными данными в 1-м (650 - 950 нм), 2-м (1100 - 1350 нм) и 3-м (1600-1870 нм) оптических окнах была исследована с помощью многомерного метода частичных наименьших квадратов (PLS) регрессии. Значимые корреляции (p < 0.0001) и относительно низкие ошибки прогнозирования были получены между спектральными данными в 1-м оптическом окне и Sb.Th (R2 = 92.3%, ошибка = 7.1%), Tb.Th (R2 = 88.4%, ошибка = 6.7%), BV/TV (R2 = 83%, ошибка = 9.8%) и SMI (R2 = 79.7%, ошибка = 10.8%). Таким образом, БИК-спектроскопия в 1-м тканевом оптическом окне способна характеризовать и оценивать свойства субхондральной кости и потенциально может быть адаптирована во время артроскопии.

Моделирование нервного волокна на основе оптического волновода

Миелинизированные аксоны являются многообещающими кандидатами для передачи нервных сигналов и света ввиду их волноводных структур. С другой стороны, с появлением таких заболеваний, как рассеянный склероз и нарушений формирования и передачи нервных сигналов из-за демиелинизации, понимание свойств миелинизированного аксона как волновода приобретает большую важность. Настоящее исследование направлено на то, чтобы показать, что профиль показателя преломления (ПП) миелинизированного аксона играет существенную роль в передаче лучей в нем. 

Оптимизация обнаружения сверхслабых световых потоков

В ходе исследования, описанного в данной статье, были объединены статистическая модель, анализ шумов детектора и эксперименты по калибровке. Согласно результатам, видимый свет может быть обнаружен с помощью ПЗС камеры с электронным умножителем с соотношением сигнал/шум, равным 3, для потоков с количеством фотонов менее 30 фотонов с−1 см−2.

Диагностика импульсного плазменного потока

Импульсные плазменные потоки в плазменных ускорителях широко используются для решения ряда научных и практических задач. Особый интерес среди применений импульсных плазменных потоков представляют термоядерный синтез и астрофизические исследования, например, экспериментальное исследование взаимодействия импульсного плазменного потока с материалами.

Полные высокопроизводительные настольные системы сканирования HSI PUSH-BROOM

Применение гиперспектральной визуализации заметно расширилось за последние годы. Тем не менее, остается общая проблема, а именно: предоставление полного интегрированного решения для фиксации 2-D гиперспектральных изображений в компактном настольном формате, которое предоставляет подробную спектральную информацию для определения компонентов, количества и их распределения в плоскости сканирования.

Автофлуоресцентная микроскопия — идентификация бактериальных сигналов на образцах горных пород
Распространенным методом обнаружения микробов в жидких и нежидких образцах является окрашивание флуоресцентными красителями, при котором образцы окрашиваются флуорофором, возбуждаемым фотонами от источника света. Флуорофоры — это молекулы, которые проявляют флуоресценцию, и могут быть биомолекулами естественного происхождения (в этом случае флуоресценция называется автофлуоресценцией), флуоресцентными красителями (синтезированными молекулами) или минералами. Конкретные применения красителей включают обнаружение и перечисление бактерий, визуализацию экспрессии генов и обнаружение биомолекул, которые иначе невозможно было бы отследить.
У Вас особенный запрос?
У Вас особенный запрос?
Весьма часто наши заказчики лучше нас знают, какое оборудование им нужно. В этом случае мы берём на себя общение с производителем, доставку и таможенную очистку, а также все вопросы гарантийного периода. Пожалуйста, заполните эту форму, и мы свяжемся с Вами, чтобы помочь решить любую Вашу задачу. Или позвоните нам по телефону +7(495)199-0-199
Форма заявки
Ваше имя: *
Ваше имя
Ваш e-mail: *
Ваш телефон: *
Ваш телефон
Наши
контакты
г. Москва, ул. Бутлерова, д. 17Б

г. Санкт-Петербург, улица Савушкина 83, корп. 3