Главная / Библиотека / Как выбрать защитные лазерные очки?

Как выбрать защитные лазерные очки?

Как выбрать защитные лазерные очки?

Защита глаз от высокоинтенсивного лазерного излучения

Защитные очки – обязательный атрибут при работе с лазерными источниками. В зависимости от степени защиты очки могут быть предназначены специально для работы с излучением 400 - 700 нм лазеров класса 3R (лазерное излучение в этом диапазоне считается относительно безвредным для человека), также в качестве профилактических мер безопасности применяются с оборудованием класса 3В и 4.

Инструкция по выбору защитных очков

  • Определите длину волны выходного излучения
  • В зависимости от типа выходного излучения – непрерывного или импульсного, необходимо учитывать следующие параметры: для непрерывного излучения – выходную мощность, для импульсного – энергию импульса, длительность, частоту и т.п.
  • Рассчитайте максимальное время выдержки
  • Определите наибольшую длительность экспозиции
  • Вычислите значение наивысшей экспозиции излучения
  • Рассчитайте требуемую плотность оптической мощности
  • В случае видимого излучения убедитесь, что выходные длины волн принадлежат этому диапазону
  • Выберите подходящую форму защитных очков

lig03_img06

Максимально допустимая безопасная выдержка

Максимально допустимая безопасная выдержка (экспозиция) показывает уровень воздействия силы излучения на человеческое тело, определяется как 1/10 мощности выходного излучения, при которой вероятность повреждений верхних покровов равна 50%. Несмотря на то, что этот фактор рассчитывается по двум осям, длине волны и времени экспозиции, непосредственно значение максимально допустимой экспозиции приводится в виде плотности мощности (Вт/м2) или плотности энергии (Дж/м2) на единицу площади поверхности.

Единичная площадь – ограниченная размером диафрагмы поверхность. Очевидно, что воздействие максимально допустимой экспозиции зависит от длины волны, типа кожи и цвета глаз, времени выдержки, а также внешних условий.

Оптическая плотность

Оптическая плотность определяется в процентах (%) общей пропускательной способности. Расчетное выражение для иллюстративности содержит логарифм.

Другими словами, оптическая плотность есть коэффициент ослабления падающего света, который проходит через оптический фильтр. В данном случае фильтр - это защитные очки, где оптическая плотность вычисляется по следующей формуле:

111_2.png                    (1)


 

где Pi - мощность падающего излучения, PT -  мощность прошедшего через фильтр излучения, Т - пропускательная способность на данной длине волны.

  • Чем больше значение оптической плотности, тем больше коэффициент ослабления падающего излучения, а значит, выше уровень защиты
  • При повышении оптической плотности мощности пропускательная способность снижается

Отличие в использовании полностью поглощающих очков, частично пропускающих и мультидиапазонных очков

Полностью поглощающие очки. Полное поглощение не позволит наблюдать видимое излучение из-за высокой оптической плотности фильтрующих пластин.

Мультидиапазонные очки позволяют работать с излучением в разных диапазонах.

Частично пропускающие очки для проведения технического обслуживания подходят для проведения технических работ с излучением мощностью до 100 мВт (OD = 1 - 2), до 10 Вт (OD = 4) и используются при проверке и выравнивании оптических схем, центрировании.

Очки усиленной защиты (полное поглощение). Оптическая плотность и порог повреждения таких очков достаточно высоки, чтобы предотвратить повреждение покровов тела от прямого воздействия излучения.

lig03_img07

Меры предосторожности

  • Не направляйте лазерный пучок прямо на поверхность защитных очков, так как это может привести к повреждениям
  • Не допускайте прямого контакта глаз с излучением при использовании защитных очков
  • Не используйте очки при работе с диапазонами, для которых они не предназначены
  • Не снимайте очки во время работы
  • Не используйте защитные очки для обыкновенных лазеров при лазерной сварке
  • Обратите внимание, что очки полностью поглощающего типа технически не могут быть отнесены к средствам защиты глаз от лазерного излучения
  • Не используйте оборудование в условиях пропускания 20% видимого излучения и меньше в темном помещении
  • Прекратите использование очков, которые повреждены или подверглись излучению высокой энергии

 

© OptoSigma

Компания INSCIENCE помогает своим заказчикам решать любые вопросы и потребности по продукции OptoSigma на территории РФ

 

 

Новые статьи
Характеристика свойств субхондральной кости человека с помощью спектроскопии в ближней инфракрасной области (БИК)

Дегенеративные заболевания суставов часто характеризуются изменениями свойств суставного хряща и субхондральной кости. Эти изменения часто связаны с толщиной субхондральной пластинки и морфологией трабекулярной кости. Таким образом, оценка целостности субхондральной кости может дать важные сведения для диагностики патологий суставов. В данном исследовании изучается потенциал оптической спектроскопии для характеристики свойств субхондральной кости человека. Образцы остеохондральной кости (n = 50 – количество образцов) были извлечены из коленного сустава трупа человека (n = 13) в четырех анатомических точках и подвергнуты БИК-спектроскопии(в ближней инфракрасной области). Затем образцы были исследованы с помощью микрокомпьютерной томографии для определения морфометрических характеристик субхондральной кости, включая: толщину пластинки (Sb.Th), толщину трабекул (Tb.Th), объемную долю (BV/TV) и индекс модели структуры (SMI). Связь между свойствами субхондральной кости и спектральными данными в 1-м (650 - 950 нм), 2-м (1100 - 1350 нм) и 3-м (1600-1870 нм) оптических окнах была исследована с помощью многомерного метода частичных наименьших квадратов (PLS) регрессии. Значимые корреляции (p < 0.0001) и относительно низкие ошибки прогнозирования были получены между спектральными данными в 1-м оптическом окне и Sb.Th (R2 = 92.3%, ошибка = 7.1%), Tb.Th (R2 = 88.4%, ошибка = 6.7%), BV/TV (R2 = 83%, ошибка = 9.8%) и SMI (R2 = 79.7%, ошибка = 10.8%). Таким образом, БИК-спектроскопия в 1-м тканевом оптическом окне способна характеризовать и оценивать свойства субхондральной кости и потенциально может быть адаптирована во время артроскопии.

Моделирование нервного волокна на основе оптического волновода

Миелинизированные аксоны являются многообещающими кандидатами для передачи нервных сигналов и света ввиду их волноводных структур. С другой стороны, с появлением таких заболеваний, как рассеянный склероз и нарушений формирования и передачи нервных сигналов из-за демиелинизации, понимание свойств миелинизированного аксона как волновода приобретает большую важность. Настоящее исследование направлено на то, чтобы показать, что профиль показателя преломления (ПП) миелинизированного аксона играет существенную роль в передаче лучей в нем. 

Оптимизация обнаружения сверхслабых световых потоков

В ходе исследования, описанного в данной статье, были объединены статистическая модель, анализ шумов детектора и эксперименты по калибровке. Согласно результатам, видимый свет может быть обнаружен с помощью ПЗС камеры с электронным умножителем с соотношением сигнал/шум, равным 3, для потоков с количеством фотонов менее 30 фотонов с−1 см−2.

Диагностика импульсного плазменного потока

Импульсные плазменные потоки в плазменных ускорителях широко используются для решения ряда научных и практических задач. Особый интерес среди применений импульсных плазменных потоков представляют термоядерный синтез и астрофизические исследования, например, экспериментальное исследование взаимодействия импульсного плазменного потока с материалами.

Полные высокопроизводительные настольные системы сканирования HSI PUSH-BROOM

Применение гиперспектральной визуализации заметно расширилось за последние годы. Тем не менее, остается общая проблема, а именно: предоставление полного интегрированного решения для фиксации 2-D гиперспектральных изображений в компактном настольном формате, которое предоставляет подробную спектральную информацию для определения компонентов, количества и их распределения в плоскости сканирования.

Автофлуоресцентная микроскопия — идентификация бактериальных сигналов на образцах горных пород
Распространенным методом обнаружения микробов в жидких и нежидких образцах является окрашивание флуоресцентными красителями, при котором образцы окрашиваются флуорофором, возбуждаемым фотонами от источника света. Флуорофоры — это молекулы, которые проявляют флуоресценцию, и могут быть биомолекулами естественного происхождения (в этом случае флуоресценция называется автофлуоресценцией), флуоресцентными красителями (синтезированными молекулами) или минералами. Конкретные применения красителей включают обнаружение и перечисление бактерий, визуализацию экспрессии генов и обнаружение биомолекул, которые иначе невозможно было бы отследить.
У Вас особенный запрос?
У Вас особенный запрос?
Весьма часто наши заказчики лучше нас знают, какое оборудование им нужно. В этом случае мы берём на себя общение с производителем, доставку и таможенную очистку, а также все вопросы гарантийного периода. Пожалуйста, заполните эту форму, и мы свяжемся с Вами, чтобы помочь решить любую Вашу задачу. Или позвоните нам по телефону +7(495)199-0-199
Форма заявки
Ваше имя: *
Ваше имя
Ваш e-mail: *
Ваш телефон: *
Ваш телефон
Наши
контакты
г. Москва, ул. Бутлерова, д. 17Б

г. Санкт-Петербург, улица Савушкина 83, корп. 3