Главная / Библиотека / Шаровые линзы: принцип работы и основные приложения

Шаровые линзы: принцип работы и основные приложения

Шаровые линзы: принцип работы и основные приложения

Введение

Шаровая линза – оптический инструмент, применяемый для повышения передачи сигнала в оптоволоконных кабелях, эмиттерах и детекторах. Шаровые линзы устанавливаются в эндоскопах, сканерах штрих-кодов, шарообразных преформах для производства асферических линз, различных приемниках.

Изготавливают шаровые линзы из цельного куска стекла, такие линзы позволяют получать параллельные пучки излучения, фокусировать излучение в зависимости от разновидности источника. Полушаровые линзы также широко распространены и часто устанавливаются вместе с шаровыми линзами для компактности конструкции.

Уравнение шаровой линзы

Пять главных параметров шаровой линзы обозначены на рис.1. Здесь d – диаметр источника входного сигнала, D – диаметр шаровой линзы, EFL – эффективное фокусное расстояние шаровой линзы, BFL – заднее фокусное расстояние шаровой линзы, n – показатель преломления материала линзы.

fig-3-bl
Рисунок 1. Основные параметры шаровой линзы

Эффективное фокусное расстояние легко посчитать, используя всего две переменные: диаметр шаровой линзы D и показатель преломления n. Эффективное фокусное расстояние отсчитывается от центра линзы. Заднее фокусное расстояние также рассчитывается в одно действие, используя всего два известных параметра: эффективное фокусное расстояние и диаметр.

1_21.png          (1)

 

2_17.png        (2)

 

Для параллельного падающего пучка числовая апертура NA шаровой линзы зависит от диаметра шаровой линзы, показателя преломления и диаметра источника входного излучения. Используя относительную апертуру f – число, равное отношению EFL к d, легко выводится выражение числовой апертуры (графически показано на рис. 2):

3_14.png         (3) 

 

 

 

Уравнение (3) подразумевает, что показатель преломления внешней среды nm равен 1. В параксиальном приближении, когда диаметр источника входного сигнала много меньше диаметра линзы, то есть d/D << 1. Числовая апертура в этом случае может быть приблизительно найдена из значения относительной апертуры f  как NA ≈ 1/2 f.

4_8.png            (4)

 

fig-2-ubl
Рисунок 2. Числовая апертура в зависимости от диаметра шаровой линзы и показателя преломления ее материала: измерения проведены компанией Edmund Optics с помощью излучения с длиной волны 587.6 нм, показатель преломления внешней среды был принят за 1

С увеличением диаметра источника входного излучения увеличивается и фокальное пятно вместе с задним фокусным расстоянием: так проявляется сферическая аберрация.

Примеры приложений

Пример 1. Передача излучения из лазера в оптическое волокно

Перенос излучения лазера в оптоволоконный кабель или любую другую волоконную оптику без больших потерь на рассеяние или поглощение требует учета некоторых параметров. Правильно подобранные шаровые линзы облегчают работу, среди критериев правильности – как можно более близкое соответствие числовой апертуры шаровой линзы числовой апертуре оптоволокна. Такое соответствие позволяет избежать потерь излучения при соединении.

Оптоволоконный кабель в основном устанавливается в задней фокальной плоскости линзы, как это показано на рис. 3.

fig-3-bl
Рисунок 3. Введение лазерного излучения в оптоволокно с помощью шаровой линзы

Диаметр входного лазерного пучка = 2 мм
Показатель преломления линзы = 1.5168
Числовая апертура волоконного кабеля = 0.22

На рис. 2 показана шаровая линза N-BK7 с числовой апертурой около 0.22 (при отношении d/D в пределах 0.3 - 0.35). Зная соотношение d/D (≈ 0.33), можно рассчитать числовую апертуру по уравнению (3): она составит 0.22.

Используя данные, приведенные выше, легко оценить параметры линзы, наиболее подходящей для введения лазерного излучения в оптоволокно. Диаметр линзы должен превышать 6 мм (2 мм/0.33). Также возможное решение – подбор материала с другим показателем преломления.

Пример 2. Соединение оптоволоконных кабелей

Передача излучения из одного оптоволоконного кабеля в другой (числовая апертура оптоволокна одинакова) легко осуществима с помощью пары шаровых линз. Достаточно разместить оба кабеля в задних фокальных плоскостях обеих линз (см. рис. 4). При этом расчеты проводятся по тем же формулам аналогично примеру 1.

fig-4-ubl
Рисунок 4. Соединение пары оптоволоконных кабелей с помощью пары шаровых линз

 

© Edmund Optics Inc.

Компания INSCIENCE помогает своим заказчикам решать любые вопросы и потребности по продукции Edmund Optics на территории РФ

 

 

Новые статьи
Генерация видимого суперконтинуума, управляемая интермодальным четырехволновым смешением в микроструктурированном волокне

В статье описан метод генерации суперконтинуума, расширенного в видимый диапазон. За счет четырехволнового смешения накачка 1064 нм создает антистоксовы и стоксовы компоненты на 831 нм и 1478 нм. Фазовый синхронизм обеспечивается благодаря микроструктурированному мультимодальному волокну особой конструкции.

Лазерно-водоструйная обработка с коаксиально-кольцевой аргоновой струей

В статье описывается усовершенствование метода лазерно-водоструйной обработки: добавление коаксиально-кольцевой аргоновой струи, мгновенно очищающей отверстие от образующегося осадка. Таким образом сохраняется высокий объем абляции при создании глубоких отверстий в сложно обрабатываемых материалах.

Пространственно-разрешенная регистрация переходных процессов времени жизни флуоресценции
В статье описывается метод регистрации динамики времени жизни флуоресценции с одномерным пространственным разрешением. Для визуализации времени жизни флуоресценции используется многомерный время-коррелированный счет фотонов и линейное сканирование.
Обзор компактных источников суперконтинуума LEUKOS для биомедицинских приложений
В обзоре рассматриваются компактные источники суперконтинуума LEUKOS УФ, видимого и ИК диапазонов, созданные для приложений проточной цитометрии, CARS-микроскопии и оптической когерентной томографии. Преимущества данных источников: компактность, надежность, стабильность и низкая стоимость.
Масштабируемый детектор одиночных фотонов с улучшенной эффективностью и разрешением по числу фотонов
В статье представлен 28-пиксельный сверхпроводящий нанопроволочный детектор одиночных фотонов (SNSPD) с параллельной архитектурой. Новая технология предлагает масштабируемое решение для квантовых сетей и высокоскоростных квантовых вычислений, сочетая удобство работы с высокой производительностью.
У Вас особенный запрос?
У Вас особенный запрос?
Весьма часто наши заказчики лучше нас знают, какое оборудование им нужно. В этом случае мы берём на себя общение с производителем, доставку и таможенную очистку, а также все вопросы гарантийного периода. Пожалуйста, заполните эту форму, и мы свяжемся с Вами, чтобы помочь решить любую Вашу задачу. Или позвоните нам по телефону +7(495)199-0-199
Форма заявки
Ваше имя: *
Ваше имя
Ваш e-mail: *
Ваш телефон: *
Ваш телефон
Наши
контакты
г. Москва, ул. Бутлерова, д. 17Б

г. Санкт-Петербург, улица Савушкина 83, корп. 3