Введение
Шаровая линза – оптический инструмент, применяемый для повышения передачи сигнала в оптоволоконных кабелях, эмиттерах и детекторах. Шаровые линзы устанавливаются в эндоскопах, сканерах штрих-кодов, шарообразных преформах для производства асферических линз, различных приемниках.
Изготавливают шаровые линзы из цельного куска стекла, такие линзы позволяют получать параллельные пучки излучения, фокусировать излучение в зависимости от разновидности источника. Полушаровые линзы также широко распространены и часто устанавливаются вместе с шаровыми линзами для компактности конструкции.
Уравнение шаровой линзы
Пять главных параметров шаровой линзы обозначены на рис.1. Здесь d – диаметр источника входного сигнала, D – диаметр шаровой линзы, EFL – эффективное фокусное расстояние шаровой линзы, BFL – заднее фокусное расстояние шаровой линзы, n – показатель преломления материала линзы.
Рисунок 1. Основные параметры шаровой линзы
Эффективное фокусное расстояние легко посчитать, используя всего две переменные: диаметр шаровой линзы D и показатель преломления n. Эффективное фокусное расстояние отсчитывается от центра линзы. Заднее фокусное расстояние также рассчитывается в одно действие, используя всего два известных параметра: эффективное фокусное расстояние и диаметр.
(1)
(2)
Для параллельного падающего пучка числовая апертура NA шаровой линзы зависит от диаметра шаровой линзы, показателя преломления и диаметра источника входного излучения. Используя относительную апертуру f – число, равное отношению EFL к d, легко выводится выражение числовой апертуры (графически показано на рис. 2):
(3)
Уравнение (3) подразумевает, что показатель преломления внешней среды nm равен 1. В параксиальном приближении, когда диаметр источника входного сигнала много меньше диаметра линзы, то есть d/D << 1. Числовая апертура в этом случае может быть приблизительно найдена из значения относительной апертуры f как NA ≈ 1/2 f.
(4)
Рисунок 2. Числовая апертура в зависимости от диаметра шаровой линзы и показателя преломления ее материала: измерения проведены компанией Edmund Optics с помощью излучения с длиной волны 587.6 нм, показатель преломления внешней среды был принят за 1
С увеличением диаметра источника входного излучения увеличивается и фокальное пятно вместе с задним фокусным расстоянием: так проявляется сферическая аберрация.
Примеры приложений
Пример 1. Передача излучения из лазера в оптическое волокно
Перенос излучения лазера в оптоволоконный кабель или любую другую волоконную оптику без больших потерь на рассеяние или поглощение требует учета некоторых параметров. Правильно подобранные шаровые линзы облегчают работу, среди критериев правильности – как можно более близкое соответствие числовой апертуры шаровой линзы числовой апертуре оптоволокна. Такое соответствие позволяет избежать потерь излучения при соединении.
Оптоволоконный кабель в основном устанавливается в задней фокальной плоскости линзы, как это показано на рис. 3.
Рисунок 3. Введение лазерного излучения в оптоволокно с помощью шаровой линзы
Диаметр входного лазерного пучка = 2 мм
Показатель преломления линзы = 1.5168
Числовая апертура волоконного кабеля = 0.22
На рис. 2 показана шаровая линза N-BK7 с числовой апертурой около 0.22 (при отношении d/D в пределах 0.3 - 0.35). Зная соотношение d/D (≈ 0.33), можно рассчитать числовую апертуру по уравнению (3): она составит 0.22.
Используя данные, приведенные выше, легко оценить параметры линзы, наиболее подходящей для введения лазерного излучения в оптоволокно. Диаметр линзы должен превышать 6 мм (2 мм/0.33). Также возможное решение – подбор материала с другим показателем преломления.
Пример 2. Соединение оптоволоконных кабелей
Передача излучения из одного оптоволоконного кабеля в другой (числовая апертура оптоволокна одинакова) легко осуществима с помощью пары шаровых линз. Достаточно разместить оба кабеля в задних фокальных плоскостях обеих линз (см. рис. 4). При этом расчеты проводятся по тем же формулам аналогично примеру 1.
Рисунок 4. Соединение пары оптоволоконных кабелей с помощью пары шаровых линз
© Edmund Optics Inc.
Компания INSCIENCE помогает своим заказчикам решать любые вопросы и потребности по продукции Edmund Optics на территории РФ
В статье приводится применение и основные параметры пикосекундных лазеров. Сравниваются лазеры Inngu Laser серии GXP с известными европейскими и американскими производителями.
г. Санкт-Петербург, улица Савушкина 83, корп. 3