Главная / Библиотека / Точность моторизированных гониометрических платформ OptoSigma

Точность моторизированных гониометрических платформ OptoSigma

Теги OptoSigma моторизированные гониометрические платформы точность позиционирования холостой ход
Точность моторизированных гониометрических платформ OptoSigma

Для высокопрецизионных задач важно учитывать основные характеристики точности используемых приборов и компонентов оптической схемы. В этой статье описываются параметры точности позиционирования и работы, а также методы их численного определения, для моторизированных гониометрических платформ компании OptoSigma.

 

 

Определение точности позиционирования

Точность позиционирования

Высота центра вращения

1G

2G

Позиционирование выполняется несколько раз с одного и того же направления в любом положении платформы, и вычисляется максимальное значение величины отклонения относительно положения остановки. Максимальное из этих числовых значений считается точностью (повторяемостью) позиционирования. За высоту центра вращения принимают расстояние от идеального центра вращения до верхней поверхности столика.

Точность отклонения центра вращения

Холостой ход

3G

4G

Точность отклонения центра вращения – это максимальный диапазон отклонения от положения идеального центра вращения при перемещении гониометра вдоль всего пути.

Позиционирование выполняется несколько раз в направлениях (+) вперед и (-) назад в любом положении (например, на обоих концах или в центральной точке) платформы, и вычисляется среднее значение величины отклонения относительно положения остановки.

Максимальное числовое значение считается холостым ходом.

Определение угловой точности

Момент жесткости

5G

Момент жесткости — это угловое смещение платформы при приложении нагрузки, равной единичному моменту.

 

Минимальное инкрементное движение

6G

Минимальное инкрементное движение (МПД) – это наименьшее приращение движения, которое устройство способно выполнять последовательно и надежно. МПД определяется как приращение, при котором транслятор точно позиционируется в любых трех положениях (в центре и на концах).

Для определения МПД гониометрического транслятора платформа точно позиционируется в трех позициях в положительном направлении (по часовой стрелке) и в 10 точках в отрицательном направлении (против часовой стрелки). Таким образом, экспериментально находят чувствительность платформы. Для наблюдения минимального инкрементного движения используется емкостной датчик и автоколлиматор.

Минимальное инкрементное движение модели OSMS-60A60

7G

©OptoSigma

Компания INSCIENCE помогает своим заказчикам решать любые вопросы и потребности по продукции OptoSigma на территории РФ 

Теги OptoSigma моторизированные гониометрические платформы точность позиционирования холостой ход
Новые статьи
sCMOS–камера TRC411 с усилением для визуализации излучения Черенкова дозы лучевой терапии.

Команда младшего научного сотрудника Цзя Мэнъюй из Школы точных приборов и оптоэлектронной инженерии Тяньцзиньского университета осуществила визуализацию излучения Черенкова дозы лучевой терапии с помощью научной sCMOS–камеры, разработанной компанией CISS

Фиксирование эволюции морфологии лазерно-индуцированной плазменной люминесценции с использованием sCMOS-камеры TRC411
Процесс эволюции лазерно-индуцированной плазмы (ЛИП) заключается в следующем: мощный импульсный лазер облучает образец, и на поверхности образца происходит процесс испарение → ионизация → расширение → излучение → рекомбинация за очень короткое время.
КМОП-камера TRC411: Лазерное измерение расстояния и тестирование технологии огне- и дымопроницаемой разветки

Ли Цзыцин, младший научный сотрудник Тяньцзиньского института пожарных исследований Министерства по чрезвычайным ситуациям, недавно опубликовал в журнале "Fire Science and Technology" статью под названием «Технология обнаружения огня и дыма на основе лазерного дальномера», в которой использовалась научная SCMOS-камера TRC411 с усилением, разработанная компанией CISS.

Применение цифрового генератора задержки STC810 для синхронного запуска лазера и динамической съемки пламени

В науке о горении важно иметь глубокое понимание динамики вихрей пламени, а также параметров образования и распределения загрязняющих веществ, таких как сажа.

 

 

 

Цифровой генератор задержки сигналов STC810: управления системой синхронизации для исследования плазмы

Прибор синхронизирует время работы каждого модуля, обеспечивая единый тактовый сигнал и устанавливая точные временные задержки в соответствии с логикой работы каждого модуля в системе, гарантируя, что они выполнят нужные операции в нужный момент.

 

У Вас особенный запрос?
У Вас особенный запрос?
Весьма часто наши заказчики лучше нас знают, какое оборудование им нужно. В этом случае мы берём на себя общение с производителем, доставку и таможенную очистку, а также все вопросы гарантийного периода. Пожалуйста, заполните эту форму, и мы свяжемся с Вами, чтобы помочь решить любую Вашу задачу. Или позвоните нам по телефону +7(495)199-0-199
Форма заявки
Ваше имя: *
Ваше имя
Ваш e-mail: *
Ваш телефон: *
Ваш телефон
Наши
контакты
г. Москва, ул. Бутлерова, д. 17Б

г. Санкт-Петербург, улица Савушкина 83, корп. 3